The algebra of compact operators does not have any finite-codimensional ideal
نویسندگان
چکیده
منابع مشابه
Finite Codimensional Invariant Subspace and Uniform Algebra
Finite codimensional invariant subspaces in the abstract Hardy space defined by a unique representing measure on a uniform algebra are described. Mathematics Subject Classification: Primary 47B48
متن کاملGeneralized Derivation modulo the Ideal of All Compact Operators
The related inequality (1.1) was obtained by Maher [3, Theorem 3.2] who showed that, if A is normal and AT = TA, where T ∈ Cp , then ‖T − (AX −XA)‖p ≥ ‖T‖p for all X ∈ ( ), where Cp is the von Neumann-Schatten class, 1≤ p <∞, and ‖·‖p its norm. Here we show that Maher’s result is also true in the case where Cp is replaced by ( ), the ideal of all compact operators with ‖·‖∞ its norm.Which allow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1979
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-66-1-33-36